Archive for March, 2018:

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

US Coatings is excited to introduce a new 2K polyurethane finish and surface-tolerant epoxy mastic system that outperforms competing systems in almost every way—at no added cost.

The VSC 1200 Topcoat and VSC 1100 Primer are more durable, sustainable and productive on the job. This improved performance is thanks to the groundbreaking Tetrashield™ protective resin developed by Eastman Chemical Company.

High-performance industrial maintenance coating system

VSC 1200 Topcoat and VSC 1100 Primer represent the next-generation of heavy-duty industrial maintenance coatings. Owners will like the system’s superior asset protection for the price while contractors will enjoy the ease of use of this system leading to a lower overall cost of ownership for industrial asset owners. The performance-driven marriage of the VSC 1100 primer and the Tetrashield-enhanced VSC 1200 finish is a winning combination in the fight against corrosion with an attractive maintenance price tag.

VSC 1200 Topcoat

VSC 1200 Topcoat is a hard, tough and extremely durable two-part (4:1) solvent-based topcoat using Eastman Chemical Company’s Tetrashield™ protective resin. Tetrashield ™ is the breakthrough at the heart of this heavy-duty industrial maintenance coating that provides the following advantages:

  • Consistent film build and easier application.
  • Exceptional adhesion.
  • Outstanding weathering, including superior gloss and color retention over standard acrylic-polyurethanes.
  • Contractor-friendly with longer pot life and shorter dry time compared to traditional acrylic coating systems.
  • Wide latitude application conditions with long recoat time, fast dry to the touch and faster through cure even at lower temperatures.
  • Environmentally-friendly formula uses high-solids formulation that requires no thinning solvents, thus reducing VOC emissions.

VSC 1100 Primer

VSC 1100 Primer is a two-part (4:1) epoxy mastic exhibiting outstanding wetting properties (for less than ideal surface preparation) and excellent film hardness for long term durability. Performance testing shows that it vastly outperforms competing primers. It boasts the following key qualities:

  • Superior adhesion to a wide range of surfaces, including steel, aluminum and concrete.
  • Exceptional corrosion resistance.
  • Superior wetting properties to perform even on marginally-prepared surfaces.
  • Lower-temperature cure.
  • Accepts a wide variety of weathering or chemical-resistant finishes.

Eastman Tetrashield™: Breakthrough protective resin

With the advanced Tetrashield™ protective resin at its core, VSC 1200 Topcoat provides more flexibility in application while providing superior performance in harsh environments over the long term.

The resin responsible for the superior performance has its origins elsewhere in the chemical industry. Before there was Tetrashield™, there was Tritan™—a BPA-free TMCD polyester Eastman developed that offered enhanced clarity, toughness, chemical resistance and impact strength for products used in medical, household and retail applications.

Eastman chemists then developed the Tetrashield™ resin to provide in the coatings industry the benefits that Tritan™ offered for consumer products. The result is a heavy-duty industrial maintenance coating that exhibits premium performance without a premium price. Coating projects are shorter, the coating dries faster and critical assets are put back in service sooner—and that keeps costs in check.

Find out more about how industrial coating projects can be made easier by reading our guide to a painless painting project. If you want to have a conversation about an upcoming job and whether the VSC 1200 Topcoat / 1100 Primer system is right for your site, let’s talk.

Archive for March, 2018:

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

Selecting the right coating – the basic questions

Industrial coating decision tree

If one coating could do everything, coating selection would be limited to color and gloss choices and specification writing would be relatively simple. Since that magic coating does not yet exist, we are left with hundreds of possible choices.

Many popular coatings can perform multiple functions. But real-world situations often demand more specific performance requirements. Effective coating selection should be based on the demands of the project, such as performance, application, budget and other requirements.

There are some basic questions that the specifier, engineer or owner need to answer to narrow the choices and find the best option.

4 questions to ask when selecting an industrial coating

Questions to ask when selecting an industrial coating

What is being coated and why?

The answer to this question indicates the scope of the project and the expectations of the owner. It may sound basic, but answers can be surprisingly deceptive.

The reason for coating something like a vessel could simply be the company CEO is going to visit it next month. Appearance then means everything and no one is really interested in the benefits of a 25-year corrosion resistant coating system.

What exposure will the item see?

This is perhaps the real “meat and potatoes” question that tells us what environmental conditions the application will regularly face. There are many parts to this question which include:

  1. Is the item exposed to the weather or wet interior environments like food process areas?
  2. Are there any elevated temperature conditions?
  3. Are there any harsh chemical fumes or potential chemical spills?
  4. Will the coating be covered by insulation?
  5. Will there be any thermal cycling/shock?
  6. How frequent will the coating be cleaned and with what chemicals?
  7. Will the coating experience any abrasion? What type (cutting or small particulate)?
  8. What is the existing condition of the substrate (new steel, contaminated steel, rusted steel, old coatings)?
  9. What is the condition of existing coatings?

How, when and where will the item be painted?

Answering this question will define the logistics of the painting project — whether applied at the shop, in the field or at an operating plant.

The coating may need to withstand early rain exposure or cold temperature cure. Certain coating systems will handle shop application better than others and will likely involve less shipping damage.

If spraying the coating is not possible due to issues like overspray problems, a brushed or rolled coating must be selected. If the speed of completion of the project is critical, fast dry/cure products will be preferable.

In many operating plants, open abrasive blasting may not be possible, so products with surface tolerant properties must be selected. And while these products are technologically advanced, those that require higher degrees of cleanliness are preferred for longer service lives.

What are the owner’s expectation in terms of service life?

At face value, one would think that the answer should be “as long as possible,” but this is not always the case, especially with limited budgets.

In the earlier case where the CEO was to visit the plant, giving the vessel a fresh look could be done rather inexpensively using a coating system with a minimal design life, especially if the vessel is to be dismantled in five years.

On the other hand, it would make sense to select a long-term service life system for an elevated water tank with a design life of 90 years, especially if it has the local high school mascot painted on it. But the longer service life systems will cost more in surface preparation and application.

Don’t guess, be certain

In the end, it is best to discuss your coating needs with a coating professional who will walk you through the basic analysis outlined here and match the right coating system for your specific set of circumstances and expectations of service life.

Archive for March, 2018:

VSC 1200: An advanced polyurethane industrial maintenance coating with superior long term performance

“The Top Two Considerations of Writing Coating Specifications: Performance-Based versus Specific Named Products”   

A coating specification serves many purposes.

In its basic use, it provides a roadmap for the proper installation of a coating system. Any number of painting standards are often referenced to provide the applicator or end user proper guidelines for carrying out the specified surface preparation and proper application of the specified coating or coating system.  The specification as written already assumes that the coatings specified are suitable for the exposure and will meet the expectations of the owner.

Unfortunately; all too often, specifications are poorly written, can cause ambiguities, fail to account for problems that may come up (example: failing to specify cold-cure products during winter painting) and probably the most problematic (to the end customer) specifying the wrong products.  Those are doomed to early failure.  If the products that are specified are wrong for the application; the rest of the specification is moot.

This article will discuss two commonly used types of coating specifications; one that uses “performance-based” requirements and the other simply calls out “specific named products”.  The assumption (for this article) is that the specification as written will indeed handle the exposure and will meet the owner’s needs and expectations.  A separate article will discuss how to select the right coating system.

Performance Based Specifications

These specifications do not call our specific products by name, but rather list a series of performance requirements (minimum performance) to which the candidate system must comply. It may call out a more general performance requirement or even reference independent (3rd party) specifications such as SSPC (Society for Protective Coatings) http://www.sspc.org/ or MPI (Master Painters Institute) http://www.paintinfo.com/index.asp or others.  Often, each coating (primer, intermediate coat and/or finish) has specific performance requirements listed.

Well written specifications call out specific requirements that will satisfy the needs of the project.  For example, it may call out a certain corrosion resistance for the primer tested to say ASTM B117 (commonly known as the Salt Fog test).  It should spell out the extent of the test (say 500 hours) and then spell out the minimum performance requirement (say no more than 2 mm undercutting at the scribe with no plane blistering or rusting).  A poorly written specification will simply say “tested to 500 hours in Salt Fog cabinet” without any performance requirement.  Testing without performance requirements is meaningless.  Any product can be “tested”.

A finish coating may have performance requirements written around weathering resistance (gloss and color retention) or abrasion/scratch resistance.  In these cases, certain test standards are referenced and minimum performance requirements are defined. Examples of some of the common tests are depicted in the chart below.

A couple words of caution when using or interpreting performance-based specifications:

  1. Be careful that the performance test used actually matches how the coating will be used. For example it makes little sense to call out a weathering performance on a primer that will be topcoated.  Likewise, calling out a Salt Fog test solely on the finish coat makes no sense.  The test must match the intended use of the specific coating or coating system.
  2. Be careful when interpreting submitted coatings for consideration that are “close” to meeting the specification. There are countless examples of coatings that “miss” meeting the specification because of a too strict interpretation of the requirement.  For example:  When comparing two finish coats that have abrasion resistant numbers of 115 mg loss versus 125 mg loss and the specification calls out no more than 120 mg loss (more loss is less abrasion resistance), the one with 125 mg loss does not meet the specification.  From a practical standpoint these two finishes have essentially the same abrasion resistance and their reported abrasion numbers are certainly within the tolerance of the test method. Yet, a perfectly acceptable coating would be disqualified based on a strict interpretation of the specification.  So, a specifier should have a very good working knowledge of performance testing, their meaning, and the significance of reported values when qualifying coatings for use.
Shown below is a chart with some commonly used performance-based standards for primers and finishes used for atmospheric exposure.  This is by no means a complete list.  These referenced methods may change based on end use, such as tank linings, high heat coatings, etc.

Primers

Performance Need Test Method Example of Performance Requirement
Corrosion Resistance (Salt Fog) ASTM B117 <2 mm UC after 500 hours exposure
Corrosion Resistance (Cyclic Prohesion/QUV-A) ASTM D5894 <3 mm UC after 3000 hours exposure
Adhesion ASTM D4541 Minimum 800 psi

 

Finishes

Performance Need Test Method Example of Performance Requirement
Abrasion Resistance (Taber Abrasion) ASTM D4060 150 mg loss using CS17 wheel; 1000 g weight and 1000 cycles
Weathering (QUV-A) ASTM G53 75% gloss retention after 2000 hours

No more than 2 dE color shift

Hardness (Pencil) ASTM D3363 2H

 

Specific Named Products

One of the advantages of specifically named products in a specification is that the specifier (engineer or owner) has already determined that the products listed will satisfy the intent of the specification and the needs of the owner.  These types of specifications will often list competitive products that may be quite similar to each other (equals) or may in fact be quite different from each other.  While the coatings may perform in service similarly, one coating system may have faster dry times or low temperature cure capability that might be favored for a specific set of circumstances.  It is then left up to the contractor to choose the system that best fits the application needs.

In the end, there are no right or wrong specifications.  There are good specs and bad ones and everything in between.  The best ones are those that are well written with minimal ambiguities and fulfill the needs of the owner for the anticipated exposure and the owner’s expectations.